375 research outputs found

    Compartmental Bone Morphometry in the Mouse Femur: Reproducibility and Resolution Dependence of Microtomographic Measurements

    Get PDF
    Microcomputed tomography (μCT) is widely used for nondestructive bone phenotyping in small animals, especially in the mouse. Here, we investigated the reproducibility and resolution dependence of μCT analysis of microstructural parameters in three different compartments in the mouse femur. Reproducibility was assessed with respect to precision error (PE%CV) and intraclass correlation coefficient (ICC). We examined 14 left femurs isolated postmortem from two strains of mice (seven per group). Measurements and analyses were repeated five times on different days. In a second step, analysis was repeated again five times for a single measurement. Resolution dependence was assessed by high-resolution measurements (10μm) in one strain and subsequent image degrading. Reproducibility was better in full bone compartment and in cortical bone compartment in the diaphysis (PE%CV = 0.06-2.16%) than in trabecular compartment in the distal metaphysis (PE%CV = 0.59-5.24%). Nevertheless, ICC (0.92-1.00) showed a very high reliability of the assessed parameters in all regions, indicating very small variances within repeated measurements compared to the population variances. Morphometric indices computed from lower- and higher-resolution images displayed in general only weak dependence and were highly correlated with each other (R2 = 0.91-0.99). The results show that parameters in the full and cortical compartments were very reproducible, whereas precision in the trabecular compartment was somewhat lower. Nevertheless, all compartmental analysis methods were very robust, as shown by the high ICC values, demonstrating high suitability for application in inbred strains, where highest precision is needed due to small population variance

    Targeted Social Distancing Designs for Pandemic Influenza

    Get PDF
    Local community networks can mitigate pandemic influenza in the absence of vaccine and antiviral drugs

    Evidence for Magnetic Field Induced Changes of the Phase of Tunneling States: Spontaneous Echoes in (KBr)1−x_{1-x}(KCN)x_x in Magnetic Fields

    Full text link
    Recently, it has been discovered that in contrast to expectations the low-temperature dielectric properties of some multi-component glasses depend strongly on magnetic fields. In particular, the low-frequency dielectric susceptibility and the amplitude of coherent polarization echoes show striking non-monotonic magnetic field dependencies. The low-temperature dielectric response of these materials is governed by atomic tunneling systems. We now have investigated the coherent properties of tunneling states in a crystalline host in magnetic fields up to 230 mT. Two-pulse echo experiments have been performed on a KBr crystal containing about 7.5% CN−^-. Like in glasses, but perhaps even more surprising in the case of a crystalline system, we observe a very strong magnetic field dependence of the echo amplitude. Moreover, for the first time we have direct evidence that magnetic fields change the phase of coherent tunneling systems in a well-defined way. We present the data and discuss the possible origin of this intriguing effect.Comment: 4 pages, 3 figures, submitted to PR

    Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala

    Get PDF
    The basolateral amygdala (BLA) mediates associative learning for both fear and reward. Accumulating evidence supports the notion that different BLA projections distinctly alter motivated behavior, including projections to the nucleus accumbens (NAc), medial aspect of the central amygdala (CeM), and ventral hippocampus (vHPC). Although there is consensus regarding the existence of distinct subsets of BLA neurons encoding positive or negative valence, controversy remains regarding the anatomical arrangement of these populations. First, we map the location of more than 1,000 neurons distributed across the BLA and recorded during a Pavlovian discrimination task. Next, we determine the location of projection-defined neurons labeled with retrograde tracers and use CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine the local influence of each projection-defined populations within the BLA. Understanding the functional and topographical organization of circuits underlying valence assignment could reveal fundamental principles about emotional processing. Basolateral amygdala (BLA) neurons distinctly encode cues predicting rewards or punishments, but how does form give rise to function? Beyeler et al. overlay anatomical projection target, location of neurons in a 3D map, and encoding properties during cue discrimination. The influence on local networks differs across projection-defined BLA populations. Keywords: reward; aversion; topography; tracing; connectivity; network; channelrhodopsin; phototagging; photoexcitation; photoinhitionNational Institute of Mental Health (U.S.) (Grant R01-MH102441)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Award DP2-DK-102256

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    Characterization of micro manipulation tasks operated with various controlled conditions by microtweezers

    Get PDF
    Micro manipulation tasks with micro tweezers were operated in different configurations. This paper discusses the main issues of pick and place operations with micro tweezers as geometric consideration, grasping force and quality of the contact surfaces. This study is based on positioning repeatability measurements and success rate of the tasks operated automatically on our micro manipulation setup. Results for a MEMS micro gripper show a high reliability of more than 90% of success rate and positioning repeatability under the micrometer

    Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain

    Full text link
    We study numerically and analytically the classical one-dimensional Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon gap. Our results show the existence of exponentially many static equilibrium configurations which are exponentially close to the energy of the ground state. The energies of these configurations form a fractal quasi-degenerate band structure which is described on the basis of elementary excitations. Contrary to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure

    Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval

    Get PDF
    Although the basolateral amygdala (BLA) is known to play a critical role in the formation of memories of both positive and negative valence, the coding and routing of valence-related information is poorly understood. Here, we recorded BLA neurons during the retrieval of associative memories and used optogenetic-mediated phototagging to identify populations of neurons that synapse in the nucleus accumbens (NAc), the central amygdala (CeA), or ventral hippocampus (vHPC). We found that despite heterogeneous neural responses within each population, the proportions of BLA-NAc neurons excited by reward predictive cues and of BLA-CeA neurons excited by aversion predictive cues were higher than within the entire BLA. Although the BLA-vHPC projection is known to drive behaviors of innate negative valence, these neurons did not preferentially code for learned negative valence. Together, these findings suggest that valence encoding in the BLA is at least partially mediated via divergent activity of anatomically defined neural populations.National Institute of Mental Health (U.S.) (Grant R01-MH102441-01)National Institutes of Health (U.S.) (Grant DP2-DK-102256-01
    • …
    corecore